Effect of Delay Spread Enhancement in MIMO Eigenbeam Space Division Multiplexing Transmission
نویسندگان
چکیده
MIMO (multiple-input multiple-output) transmission is a promising technology to improve the frequency usage efficiency in mobile radio communications. In this letter, MIMO transmission with eigenbeam space division multiplexing (E-SDM) is focused on and the site-dependent beamforming characteristics is examined to know the transmission characteristics. Site-dependent radiowave direction of arrival and impulse responses are obtained using ray tracing. Result shows that effect of radiowaves with longer delays is enhanced due to E-SDM beamforming, and rather more capability of treating a longer excess delay is necessary for time-domain multipath compensation. key words: radio propagation, delay spread, MIMO, E-SDM
منابع مشابه
Pseudo Eigenbeam-Space Division Multiplexing (PE-SDM) in Frequency-Selective MIMO Channels
In a frequency-selective multiple-input multiple-output (MIMO) channel, the optimum transmission is achieved by beamforming with eigenvectors obtained at each discrete frequency point, i.e., an extension of eigenbeam-space division multiplexing (E-SDM). However, the calculation load of eigenvalue decomposition at the transmitter increases in proportion to the number of frequency points. In addi...
متن کاملStochastic Method of Determining Substream Modulation Levels for MIMO Eigenbeam Space Division Multiplexing
Multiple-input multiple-output (MIMO) eigenbeam space division multiplexing that uses adaptive modulations for substreams is a promising technology for improving transmission capacity. A fundamental drawback of this approach is that the modulation levels determined from the carrier-to-noise ratio at each substream are sometimes overly optimistic so the use of these modulation levels results in ...
متن کاملChannel Prediction Techniques for a Multi-User MIMO System in Time-Varying Environments
Although multi-user multiple-input multiple-output (MIMO) systems provide high data rate transmission, they may suffer from interference. Block diagonalization and eigenbeam-space division multiplexing (E-SDM) can suppress interference. The transmitter needs to determine beamforming weights from channel state information (CSI) to use these techniques. However, MIMO channels change in time-varyi...
متن کاملFrequency-Domain Eigenbeam-SDM and Equalization for Single-Carrier Transmissions
In mobile communications, the channel consists of many resolvable paths with different time delays, resulting in a severely frequency-selective fading channel. The frequency-domain equalization (FDE) can take advantage of the channel selectivity and improve the bit error rate (BER) performance of the single-carrier (SC) transmission. Recently, multi-input multi-output (MIMO) multiplexing is gai...
متن کاملMIMO E-SDM Transmission Performance in an Actual Indoor Environment
MIMO systems using a space division multiplexing (SDM) technique in which each transmit antenna sends an independent signal substream have been studied as one of the successful applications to increase data rates in wireless communications. The throughput of a MIMO channel can be maximized by using an eigenbeam-SDM (E-SDM) technique, and this paper investigates the practical performance of 2×2 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 88-A شماره
صفحات -
تاریخ انتشار 2005